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Our universe’s standard model : ΛCDM
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• Scale factor evolution

• Primordial fluctuations                                   after inflation or bounce or whatnot
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CDM = non-relativistic 

non-interacting matter

Λ = uniform energy 
w/ negative pressure
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• Our Universe’s ingredient list :

To test DM and DE models, we want the strongest contraints achievable 
on the cosmological parameters !
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What is observable ?
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Cosmic Microwave Background Large-scale structure

380 000 years after Big Bang 

z = 1100

3D map of local Universe 

z=0 to 5

Both give contraints on combinations of cosmological parameters, but not the same !
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Parameter contraints : banana plots
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Planck collaboration, 2013

Degeneracy between parameters : 

one experiment can only constraints 
combinations of parameters… 

Here, ΩmH0
3 and Ωm

0.26σ8.

1 parameter 

likelihood

2 parameters 

likelihood
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Post-analysis combination
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Example in the ΩΛ-Ωm plane

CMB

Supernovæ Ia

Multiplying likelihoods 

from the 3 probes 

CMB, BAO, SNe 

gives posterior product 

likelihood 

BUT 

this does not take into 

account the fact that 

it is the same observed sky ! 

THE OBSERVABLES ARE 

CORRELATED

product 

likelihood

Kowalski et al, 2008

Baryon acoustic oscillations
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A toy model
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X constraints 

a-b
Y constraints 

ab

Product of 

likelihoods

Joint X-Y 
likelihood

LX × LY LX,Y

Take two correlated random variables X(t) and Y(t) depending on 

two parameters a and b :(
X(t)
Y(t)

)
= N
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(a− b)× t
4abt2

)
,

(
σX ρ
ρ σY
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A toy model
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Why is it better ? 

Because : 

-         uses more information than 

- difference of Shannon entropy 

- observations are noisy, but if experimental noises are uncorrelated 
 

- so experimental noise and part of the systematics just go away ! 

- it’s free additional unbiased information !

LX,Y LX × LY

⟨(X+ NX)(Y+ NY)⟩ = ⟨XY⟩+ ⟨XNY⟩+ ⟨NXY⟩+ ⟨NXNY⟩
=0 =0

=0

LX,Y ∝ exp

[

−
1
2
∑

i

(Xi, Yi)C
−1
X,Y (Xi, Yi)

T

]

ΔS = ln

√

1−
ρ2

σXσY
< 0



Cyrille Doux 9 nov. 2016Cross-correlations of CMB and LSS cosmological probes

Why are there correlations between CMB and LSS ?
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IDEA 
Looking for physical effects of large-scale structures on the CMB…

CMB photons 

are deflected from  

straight trajectories by 

gravitational potentials : 

galaxies, galaxy clusters, HI clouds, 

and dark matter haloes
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CMB weak lensing
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Tobs (n̂) = T (n̂+∇ϕ (n̂)) S. Basak et al.: Simulating weak lensing of CMB maps 57

Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
2 8 60 min 9.1 GB

Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter

UNLENSED CMB 
Basak et al, 2009
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CMB weak lensing
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Tobs (n̂) = T (n̂+∇ϕ (n̂))S. Basak et al.: Simulating weak lensing of CMB maps 57

Fig. 3. Top left: a small portion of a simulated unlensed CMB temper-
ature anisotropy map. Top right: a small portion of the corresponding
lensed CMB temperature anisotropy map. Bottom left: a small portion
of the amplitude of the simulated deflection field map. Bottom right: a
small portion of the difference of simulated lensed and unlensed CMB
maps. These maps are obtained using NFFT for the oversampling factor
σ = 2 and convolution length K = 4.

Table 3. Variation in CPU time and memory requirements with resolu-
tion to simulate CMB maps (unlensed and lensed, oversampling factor
σ = 2, convolution length K = 4) using NFFT.

nside lmax CPU Memory
time requirement

256 512 1 min 12 s 491 MB
512 1024 6 min 8 s 1.9 GB

1024 2048 32 min 7.6 GB

such realization of a lensed CMB temperature field, as well as
the difference between the lensed and unlensed fields.

Since weak lensing of CMB is a tiny effect on small angu-
lar scales, we show a realization of a small portion of the un-
lensed CMB temperature anisotropies, lensed CMB temperature
anisotropies, amplitude of deflection field and, the difference of
lensed and unlensed CMB temperature anisotropies in Fig. 3 to
illustrate the lensing effect more clearly. Although unlensed and
lensed CMB temperature anisotropies are indistinguishable to
the naked eye, the correlation between the deflection field and
the difference between the lensed and unlensed CMB tempera-
ture anisotropies is clearly visible.

Table 3 shows the typical CPU time and memory required to
simulate a single realization of unlensed and lensed CMB tem-
perature and polarization, at different resolutions. These timings
correspond to an AMD880 CPU running at 2.4 GHz. Storage of
the window function at the grid points in both the spatial and
frequency domain before computing the Fourier transform con-
sumes a fair amount of memory, which ultimately increases the
overall memory requirement for the simulation of lensed CMB
maps (Kunis & Potts 2008; Fourmont 2003).

Tables 4 and 5 show the same, but with varying convolu-
tion lengths and oversampling factors. Increase in the convo-
lution length not only increases the computational cost of the

Table 4. Variation in the CPU time and memory requirements with
the convolution length K to simulate a CMB map (both unlensed and
lensed, with nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
2 6 45 min 8.4 GB
2 8 60 min 9.1 GB

Table 5. Variation in CPU time and memory requirements with the over-
sampling factor σ for simulating a realization CMB map (both unlensed
and lensed, nside = 1024, lmax = 2048) using NFFT.

Oversampling Convolution CPU Memory
factor length time requirement
(σ) (K)
2 4 32 min 7.6 GB
3 4 38 min 10 GB
4 4 47 min 13 GB

interpolation part of NFFT, but also increases the cost of the
precomputation of window function and memory requirement
since one has to compute and store the window function at a
larger number of grid points in the spatial domain before apply-
ing NFFT (Kunis & Potts 2008; Fourmont 2003). On the other
hand, increasing the oversampling factor only impacts the mem-
ory and CPU requirements of the (oversampled) FFT part of the
algorithm.

On the same plots, Fig. 4 shows the theoretical power spectra
CXY

l , where XY represents TT, EE, T E and BB respectively, for
the lensed and unlensed cases, as predicted by CAMB (Challinor
& Lewis 2005). In the cosmological model, we decided to in-
clude no primordial tensors, hence CBB

l is entirely due to lensing.
An accurate recovery of this power spectrum from lensed

polarization maps is therefore a powerful test of our simulation
method. In Fig. 5, we show, on top of the lensed theoretical
spectra (lines), the average empirical power spectra computed
from 1000 simulations (circles). We can see that the agreement
is excellent, which is remarkable for CBB

l as explained above.
We have ignored the lensed angular power spectrum beyond the
multipole l = 1700 in the comparison, because the accurate com-
putation of the average empirical power spectra for the multi-
poles l > 1700 requires lensed CMB maps simulated from the
power spectra of unlensed CMB and a lensing potential beyond
the multipole lmax = 2048, which is the maximum multipole we
used in the simulations. It is worth noting here that theoretical
predictions for the B-mode power spectra induced from lensing,
as computed in CAMB, are based on non-trivial, partially re-
summed expansions of correlation functions (Challinor & Lewis
2005). Figure 5 clearly shows very good agreement between the
power spectra predicted from CAMB and measured from our
simulations, therefore validating a posteriori the theoretical pre-
dictions.

To obtain a more quantitative view of the accuracy of the
method, we show in Fig. 6 the relative difference between the
average empirical power spectra computed on the 1000 simula-
tions and the theoretical spectra from CAMB, both for the un-
lensed (red solid) and lensed (green dashed) cases. In each plot,
we also show the theoretical root-mean-square deviation of the
averaged empirical spectra, computed by neglecting the small
lensing-induced non-Gaussianity in the lensed cases. Note that
this corresponds to a very small underestimation of the scatter

LENSED CMB 
Basak et al, 2009
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LENSING POTENTIAL 
Planck collaboration

Planck Collaboration: Gravitational lensing by large-scale structures with Planck

Planck at the expected level. In Sect. 3.3, we cross-correlate the
reconstructed lensing potential with the large-angle temperature
anisotropies to measure the CT�

L correlation sourced by the ISW
e↵ect. Finally, the power spectrum of the lensing potential is pre-
sented in Sect. 3.4. We use the associated likelihood alone, and
in combination with that constructed from the Planck temper-
ature and polarization power spectra (Planck Collaboration XI
2015), to constrain cosmological parameters in Sect. 3.5.

3.1. Lensing potential

In Fig. 2 we plot the Wiener-filtered minimum-variance lensing
estimate, given by

�̂WF
LM =

C��, fid
L

C��, fid
L + N��L

�̂MV
LM , (5)

where C��, fid
L is the lensing potential power spectrum in our fidu-

cial model and N��L is the noise power spectrum of the recon-
struction. As we shall discuss in Sect. 4.5, the lensing potential
estimate is unstable for L < 8, and so we have excluded those
modes for all analyses in this paper, as well as in the MV lensing
map.

As a visual illustration of the signal-to-noise level in the lens-
ing potential estimate, in Fig. 3 we plot a simulation of the MV
reconstruction, as well as the input � realization used. The re-
construction and input are clearly correlated, although the recon-
struction has considerable additional power due to noise. As can
be seen in Fig. 1, even the MV reconstruction only has S/N ⇡ 1
for a few modes around L ⇡ 50.

The MV lensing estimate in Fig. 2 forms the basis for a
public lensing map that we provide to the community (Planck
Collaboration I 2015). The raw lensing potential estimate has a
very red power spectrum, with most of its power on large angular
scales. This can cause leakage issues when cutting the map (for
example to cross-correlate with an additional mass tracer over a
small portion of the sky). The lensing convergence  defined by

LM =
L(L + 1)

2
�LM , (6)

has a much whiter power spectrum, particularly on large angular
scales. The reconstruction noise on  is approximately white as
well (Bucher et al. 2012). For this reason, we provide a map
of the estimated lensing convergence  rather than the lensing
potential �.

3.2. Lensing B-mode power spectrum

The odd-parity B-mode component of the CMB polarization is
of great importance for early-universe cosmology. At first order
in perturbation theory it is not sourced by the scalar fluctuations
that dominate the temperature and polarization anisotropies, and
so the observation of primordial B-modes can be used as a
uniquely powerful probe of tensor (gravitational wave) or vec-
tor perturbations in the early Universe. A detection of B-mode
fluctuations on degree angular scales, where the signal from
gravitational waves is expected to peak, has recently been re-
ported at 150 GHz by the BICEP2 collaboration (Ade et al.
2014). Following the joint analysis of BICEP2 and Keck Array
data (also at 150 GHz) and the Planck polarization data, primar-
ily at 353 GHz (BICEP2/Keck Array and Planck Collaborations
2015), it is now understood that the B-mode signal detected
by BICEP2 is dominated by Galactic dust emission. The joint

�̂WF (Data)

Fig. 2 Lensing potential estimated from the SMICA full-mission
CMB maps using the MV estimator. The power spectrum of
this map forms the basis of our lensing likelihood. The estimate
has been Wiener filtered following Eq. (5), and band-limited to
8  L  2048.

�̂WF (Sim.)

Input � (Sim.)

Fig. 3 Simulation of a Wiener-filtered MV lensing reconstruc-
tion (upper) and the input � realization (lower), filtered in the
same way as the MV lensing estimate. The reconstruction and
input are clearly correlated, although the reconstruction has con-
siderable additional power due to noise.

analysis gives no statistically-significant evidence for primor-
dial gravitational waves, and establishes a 95 % upper limit
r0.05 < 0.12. This still represents an important milestone for
B-mode measurements, since the direct constraint from the B-
mode power spectrum is now as constraining as indirect, and
model-dependent, constraints from the TT spectrum (Planck
Collaboration XIII 2015).

In addition to primordial sources, the e↵ect of gravitational
lensing also generates B-mode polarization. The displacement of
lensing mixes E-mode polarization into B-mode as (Smith et al.

4
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SDSS-III/BOSS galaxy survey
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BOSS/eBOSS at Apache Point Observatory, NM 

• 1,000-fiber spectrograph, resolution R~2000, λ=360-1100 nm 

• 106 galaxies, 200000 quasars
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CMB lensing × LSS
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Joint CMB and Galaxy Lensing 5

Figure 1. Density of tracer galaxies derived from the DES SV
benchmark catalog plotted across the benchmark mask region.
The density map is shown at Healpix Nside = 2048 resolution
(corresponding to a pixel size of ∼ 1.7′). Note that although we
plot the pixelized galaxy density here, wκg(θ) and wγT g(θ) are
computed using the un-pixelized tracer galaxy coordinates. Grey
regions are either masked or outside the SV footprint. The grid
lines are spaced 2.5 degrees apart in both R.A. and Dec. The
coordinates (74.6,−52.7) indicate the position of the map center
in R.A. and Dec.

skynet2 computes the redshift probability distribution func-
tions, p(z), for each galaxy, given the photometric col-
ors of that galaxy. Several photometric redshift estima-
tion codes have been applied to DES SV galaxies. In this
work we use the skynet2 code as it performed the best
in tests (Bonnett et al. 2015) and because this matches
the choice made for the cosmic shear analysis of DES
SV data by The Dark Energy Survey Collaboration et al.
(2015). Bonnett et al. (2015) showed that skynet2 was
able to recover the mean redshift of samples of DES SV
‘Gold’ galaxies to typically better than 0.04. In general,
though, DES SV science results have been shown to be
quite robust to the choice of photo-z estimation code (e.g.
Giannantonio et al. 2016; Crocce et al. 2016). Tracer and
source galaxies are selected on the basis of the z value at
which p(z) peaks, zp. For the tracers, we restrict the analy-
sis to galaxies with 0.4 < zp < 0.8. The final tracer catalog
contains approximately 1.3 million galaxies. A map of the
tracer galaxy density across the benchmark mask is shown
in Fig. 1.

The normalized N(z) for the entire tracer catalog (i.e.
the sum of all the individual p(z)) is shown in Fig. 2. The cor-
responding W g(χ), gs(χ) and gCMB(χ) are shown in Fig. 3

Figure 2. The normalized photometric redshift distributions,
N(z), for the tracer and source galaxy samples. The tracers are
selected using a 0.4 < zp < 0.8 cut, where zp is the redshift
that maximizes the photometrically-determined redshift proba-
bility distribution for an individual galaxy, p(z). The sources are
selected using a 0.8 < zp < 1.3 cut.

(note that we have transformed these quantities into func-
tions of redshift for plotting purposes). It is clear from Fig. 3
that the tracer galaxy W g(χ) peaks in a redshift range for
which both gs(χ) and gCMB(χ) are large. Using higher red-
shift tracer galaxies would increase the amplitude of wκg(θ),
but would decrease the amplitude of wγT g(θ). Similarly, us-
ing somewhat lower redshift tracer galaxies would increase
the amplitude of wγT g(θ), but would decrease the ampli-
tude of wκg(θ). We note here that the measured N(z) for
the tracer catalog enters into the modeling of wκg(θ) and
wγT g(θ) through W g(χ); as we will discuss more in §5.2.3,
the dependence of wκg(θ) and wγT g(θ) on N(z) makes the
joint measurement of these quantities a potentially powerful
probe of galaxy redshift distributions.

3.1.2 Source galaxy shear catalog

The shear catalog used in this work to measure wγT g(θ) is
also derived from DES SV data2. Two shear catalogs were
produced and tested extensively in Jarvis et al. (2015) (here-
after J15): the ngmix3 (Sheldon 2014) and the im3shape4

(Zuntz et al. 2013) catalogs. We use only the ngmix cata-
log in this work because they have a higher source num-
ber density. Shear estimation with ngmix was carried out
using images in r, i, z bands. See J15 for more details and
various tests of the shear pipeline. These choices are con-
sistent with other analyses of DES SV data, including the
cosmology analysis of the cosmic shear two-point func-
tion (The Dark Energy Survey Collaboration et al. 2015).
J15 performed many comparisons of the two shear pipelines,
finding generally good agreement.

2 The shear catalog is available at
http://des.ncsa.illinois.edu/releases/sva1.
3 https://github.com/esheldon/ngmix
4 https://bitbucket.org/joezuntz/im3shape

MNRAS 000, 1–17 (2016)
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Figure 3. The W g, gCMB and gs factors (and the relevant prod-
ucts of these factors) that enter into the computation of wκg(θ)
(Eqs. 6 and 5) and wγT g(θ) (Eq. 8). The figure is intended to
illustrate the redshift ranges that contribute most to wκg(θ) and
wγT g(θ). All curves have been normalized to the same maximum
value.

Particularly relevant for our purposes is the J15 com-
parison of the im3shape and ngmix tangential shear measure-
ments. J15 measured tangential shears around luminous red
galaxies using both pipelines over an angular range similar
to that used here. J15 found that the ratio of the im3shape to
ngmix tangential shear measurements is consistent with ex-
pectations from the application of these two shear pipelines
to simulated data. The two pipelines can therefore be con-
sidered consistent with each other in their measurements of
tangential shear. Note, though, that this ratio test does not
preclude the possibility that both shear catalogs are biased
by a similar multiplicative factor; we will consider how the
joint measurement of wκg(θ) and wγT g(θ) can be used to
constrain such multiplicative biases in §5.2.2.

We restrict the source catalog to galaxies with 0.8 <
zp < 1.3. This redshift cut and the various benchmark se-
lections yield ∼ 947, 000 total source galaxies with a num-
ber density of 1.9/arcmin2. The photometrically-determined
N(z) for the source galaxies is shown in Fig. 2.

3.2 Data from the South Pole Telescope

The CMB κ maps used in this work were derived from
CMB temperature data taken as part of the 2500 square
degree South Pole Telescope Sunyaev-Zel’dovich (SPT-SZ)
survey (Story et al. 2013). Many observations at 150 GHz
of the SPT-E region were combined using inverse-variance
weighting to generate a 25◦×25◦ CMB temperature map. A
CMB κ map was then derived from the CMB temperature
map following the methods outlined in van Engelen et al.
(2012), which rely on the quadratic estimator of Hu (2001)
and Hu & Okamoto (2002). The CMB κ map was pixelized
using a Healpix (Górski et al. 2005) grid with Nside = 2048.
The processed SPT CMB lensing maps used here are iden-
tical to those used in Giannantonio et al. (2016) and we
refer the reader to that work for more details. The same
maps were also used in the cross-correlation of CMB lensing
with galaxy lensing measurement of Kirk et al. (2015). As

Figure 4. The filtered lensing convergence, κ, derived from SPT
CMB data across the benchmark mask region. As described in the
text, the κ map is high-pass filtered to ℓ > 30 and is smoothed
with a Gaussian beam with θFWHM = 5.4′. For this plot we have
also applied a Gaussian beam with θFWHM = 10′ to improve
the visualization. The map is shown at Healpix Nside = 2048
resolution. Note that although we have applied the benchmark
mask in making this plot, the full SPT-derived κ map is used
when measuring wκg(θ). Coordinate system and gridlines are the
same as those in Fig. 1.

in Giannantonio et al. (2016), we filter the pixelized CMB κ
map to remove modes with ℓ < 30 and also apply Gaussian-
beam smoothing with θFWHM = 5.4′. The κmap is plotted in
Fig. 4 (with additional smoothing for better visualization).

Planck Collaboration et al. (2015a) have also released
a CMB-lensing-derived κ map that could be used to mea-
sure wκg(θ). As demonstrated in Giannantonio et al. (2016),
the signal-to-noise of wκg(θ) measured using the benchmark
galaxies and the Planck κ map is only slightly lower than
the signal-to-noise of the same measurement using the SPT
κ map. However, because this work is intended as a “proof of
concept” for the joint wκg(θ) and wγT g(θ) measurement, we
postpone a joint measurement of wκg(θ) and wγT g(θ) with
Planck and DES data to future work based on a larger DES
sample.

4 wκg(θ) AND wγT g(θ) MEASUREMENTS

We measure wκg(θ) using the CMB κ map described in §3.2
and the galaxy tracer catalog described in §3.1.1. We esti-
mate wκg(θ) with

ŵκg(θα) = κ̄α − κ̄rand
α , (11)

MNRAS 000, 1–17 (2016)

Baxter+16 : DES SV x SPT

Bianchini+15 : high-z 

Herschel galaxies x Planck lensing

We applied the pipeline described above to our set of
simulations in order to recover the input cross- and autopower
spectra used to generate such simulations. The extracted
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ĈL

g
,

ĈL
gg
, and

kk
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å=
=

C
N

Cˆ 1 ˆ , (26)L
XY

i

N

L
XY i

sim 1

,sim

where k=X Y g, { , }, i refers to the ith simulation, and
=N 500sim is the number of simulations. The errors were

computed from the covariance matrix as

D =
æ

è
çççç

ö

ø
÷÷÷÷

C
N

ˆ Cov
, (27)L

XY LL
XY

sim

1 2

and the covariance matrix ¢CovLL
XY was evaluated from the

simulations as

å=
-

-

´ -

¢
=

¢ ¢

( )
( )

N
C C

C C

Cov
1

1
ˆ ˆ

ˆ ˆ . (28)

LL
XY

i

N

L
XY i

L
XY

L
XY i

L
XY

sim 1

,

,

sim

We also show, for comparison, the theoretical error bars
obtained from Equation (10), modified to take into account the
binning. They are in generally good agreement with the MC
error estimates, which, however, are slightly larger (by up to
~25%).

5. POWER SPECTRA

5.1. CMB Convergence–Galaxy Cross-correlation

The recovered cross-spectrum is shown in Figure 9. To
compute it we have applied to both maps masks that select the

five H-ATLAS patches of interest. The error bars are estimated
by cross-correlating 500 MC realizations of simulated CMB
convergence maps (consisting of both signal and noise) with
the true H-ATLAS galaxy density map, as described in Section
5.3. This method assumes that the two maps are uncorrelated;
our error estimates are a good approximation because both
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g,tot ,tot 2. We have also
estimated the errors from cross-correlations of 500 MC
realizations of simulated H-ATLAS galaxy density maps with
the real Planck CMB convergence map. The former approach
yields slightly smaller error bars, yet slightly larger than those
estimated analytically (see Figure 10). These error estimates

Figure 5. Convergence maps (upper row) and galaxy overdensity maps (lower row) in the H-ATLAS fields: multipoles >ℓ 400 for which 1(S N) 0.3ℓ have been
filtered out. Galactic longitude and latitude (l, b) of patch centers are provided in brackets. The grid overlay has a spacing of 3° in each box.

Figure 6. Upper panel: cross-power spectrum of simulated galaxy and lensing
maps constructed with b = 3. The points connected by the solid blue line
represent the binned input cross-spectrum, and the average reconstructed
spectrum from 500 simulations is shown by the orange points. Lower panel:
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obtained with the simulation covariance matrix (orange points) and with the
analytical approximation (blue points) are shown for comparison.

7

The Astrophysical Journal, 802:64 (15pp), 2015 March 20 Bianchini et al.

We applied the pipeline described above to our set of
simulations in order to recover the input cross- and autopower
spectra used to generate such simulations. The extracted

k
ĈL
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CMB lensing × LSS
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Baxter+16 : DES SV x SPTLOWZ

QSO

Lensing 

CMASS

Measurement : angular power spectra Cℓ (cross + auto)

Cℓ observed "(θcosmo|Cℓ’s)
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Constraints on cosmological parameters
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New cross-correlation : Ly-α forest × CMB lensing

16

Cross-correlation can show new physics too ! 

What’s the Lyman-α forest ? 

- absorption lines in quasar spectra 

- Ly-α transition in neutral hydrogen n=1 to n=2 

- reveals intergalactic HI clouds like a core sample

n=1

n=2

n=3

λ=1216Å

QSO 

(emitter)
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• cross-correlation of fluctuations in Ly-α and CMB lensing 

• denser regions (κCMB >0 ) ⟹ more fluctuations in PLy-α(k)  

• tests our understanding of intergalactic baryonic physics

Ly-α forest × CMB lensing

17

Ly-α forest in quasar spectra

HI in 

intergalactic “clouds”

CD, Schaan+16, PRD



Cyrille Doux 9 nov. 2016Cross-correlations of CMB and LSS cosmological probes

Thanks !
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