Implementation of the First Level Trigger of JEM-EUSO: Results of the First Tests

Aera Jung¹, S. Bacholle¹, P. Barrillon², M. Bertaina^{3,4}, S. Blin-Bondil⁵, M. Casolino^{6,7},
A. Cummings⁸, S. Dagoret-Campagne², J. Eser⁸, F. Fenu^{3,4}, P. Gorodetzky¹, R. Gregg⁸,
P. Hunt⁸, Y. Kawasaki⁶, H. Krantz⁸, O. Larsson⁶, M. Mignone⁴, H. Miyamoto^{3,4},
E. Parizot¹, L. W. Piotrowski⁸, G. Prévôt¹, J. Rabanal², L. Wiencke⁸
for the JEM-EUSO collaboration

¹APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, Paris, France
 ²Laboratoire de l'Accélérateur Linéaire, Université Paris Sud-11, CNRS/IN2P3, Orsay, France
 ³Universita degli studi di Torino, Torino, Italy
 ⁴INFN Torino, Torino, Italy
 ⁵OMEGA, Ecole polytechnique, Palaiseau, France
 ⁶RIKEN Advanced Science Institute, Wako, Japan
 ⁷INFN Roma Tor Vergata, Roma, Italy
 ⁸Department of physics, Colorado School of Mines, Golden, Colorado, USA

1

Contents

The JEM-EUSO program for ultra-high-energy cosmic ray detection from space

Electronics of the JEM-EUSO pathfinders, definition and implementation of the first level trigger (L1)

Tests of the L1 Trigger

Summary

01 What are cosmic rays?

- High-energy particles in the Galaxy (protons and nuclei)
- Wide energy range, up to macroscopic energies (10²⁰ eV → several Joules!)
- The flux decreases very rapidly with energy
- Ultra-high-energy cosmic rays (UHECRs) are very interesting
 - Most energetic particles in the universe
 - Challenging for astrophysics
 - Unknown sources
 - Unknown acceleration mechanism
 - Low magnetic rigidity → smaller deflections → point towards sources?
 - But very low flux (1 part/km²/century)

→ Huge detectors needed!

 \rightarrow Go to space \rightarrow JEM-EUSO collaboration

01 JEM-EUSO (Japanese Experiment Module – Extreme Universe Space Observatory)

The detection principle

- High energy cosmic rays produce "atmospheric showers": cascades of secondary particles
- Up to hundreds of billions of secondary particles!
- \rightarrow excitation of air molecules
- → de-excitation by fluorescence emission (UV light, isotropic)
- \rightarrow Cherenkov emission (along shower axis)
- Detection of UV light from the shower, with large field-of-view telescope
 (2.5 m Ø Fresnel lens optics, ±30° FoV)

 \rightarrow Reconstruction of the energy and arrival direction of the incoming cosmic ray

01 JEM-EUSO (Japanese Experiment Module – Extreme Universe Space Observatory)

JEM-EUSO pathfinders

Space

Balloon

Ground (looking up)

02 Data encoding

Photo-Detector Module board

Basic information: Number of photo-electrons recorded in each pixel during a time unit of 2.5 μ s

"Gate Time Unit": 1 GTU = $2.5 \,\mu$ s

Photon count over the entire PDM (2304 pixels) during 1 GTU

GTU: 50

• Data organized by "packets" of 128 GTUs

Photon count for 1 pixel as a function of time (discrete values)

02 Trigger algorithm

Goal: 1) trigger on cosmic-ray showers, but not on other atmospheric phenomena → Discrimination based on the timescale and structure of the signal

2) The L1 trigger parameters will adjust themselves such that the false trigger rate is lower than 1 per second.

	Event region	Event frequency	Event size	Event duration	Light spectrum	Event energy
Meteors	Atmosphere	5~100 or more /hour	0.5~2 m	0.5 ~ 3 s	Violet to red	variable
Lightning	Troposphere	3/min	Some km	0.1 s	Violet to red	$10^{12} \mathrm{W}$
Sprites	Mesosphere	unknown	Some km	Some ms	red	10 ⁷ W
Jets	Stratosphere Troposphere	unknown	Tens of km	0.4 s	blue	10 ⁴ W
Elves	Mesosphere	unknown	200 km	< 1ms	red	
Noctilucent clouds	Mesosphere	variable	Some tens of km	hours	solar	
Aurorae	Mesosphere to atmosphere limit	variable	Some hundreds of km	From minutes to hours	Violet to red	10 ¹⁰ W
Space debris	Atmosphere	5/day	$0.5 \sim 2 \text{ m}$	$0.5 \sim 3 \text{ s}$	Violet to red	variable
Cosmic ray		variable		$50 \sim 150$ us	UV	variable

 \rightarrow Level 1 trigger (L1): select events with fast signal variations

→ Level 2 trigger (L2): select events with space-time structure compatible with a cosmic-ray shower ("tracks" developing at the speed of light)

L1 Trigger conditions

CONDITION 1: "Local signal"

At least 1 pixel in a <u>3x3 pixels cell</u> with photon count \ge N (in 1 GTU)

CONDITION 2: "Persistency"

CONDITION 1 must be met by the same cell during P consecutive GTUs

CONDITION 3: "Global signal"

The total number of p.e. in the cell during P consecutive GTUs must be $\geq S$

"Gate Time Unit": 1 GTU = $2.5 \mu s$

Essentially the signal has to be stronger than N for longer than P GTUs and sum to more than S.

"Gate Time Unit": 1 GTU = $2.5 \mu s$

"Gate Time Unit": 1 GTU = $2.5 \ \mu s$

"Gate Time Unit": 1 GTU = $2.5 \mu s$

"Gate Time Unit": 1 GTU = $2.5 \mu s$

"Gate Time Unit": 1 GTU = $2.5 \mu s$

Series of tests of the internal Level1 trigger at the level of 1 elementary cell (EC)

1st test: at Laboratoire Astroparticule & Cosmologie (APC) in Paris, France

- Internal Level 1 (L1) trigger functionality using dark box, with LED light
- 2nd test: at TurLab in Torino, Italy
 - July 19th~28th, 2015 and August $23^{rd} \sim 29^{th}$, 2015
 - Internal Level 1 (L1) trigger with different kinds of emulated light sources
- 3rd test: EUSO-TA site in Delta, Utah, USA
 - October $6^{th} \sim 19^{th}$, 2015
 - First field test for internal Level 1 (L1) trigger

The L1 tests were successful

=> The L1 trigger is now implemented in the EUSO-SPB instrument

(Long-duration flight operated by NASA, scheduled on April 2017)

Series of tests of the internal Level1 trigger at the level of 1 elementary cell (EC)

1st test: at Laboratoire Astroparticule & Cosmologie (APC) in Paris, France

- Internal Level 1 (L1) trigger functionality using dark box, with LED light
- 2nd test: at TurLab in Torino, Italy
 - July 19th~28th, 2015 and August $23^{rd} \sim 29^{th}$, 2015
 - Internal Level 1 (L1) trigger with different kinds of emulated light sources
- 3rd test: EUSO-TA site in Delta, Utah, USA
 - October $6^{th} \sim 19^{th}$, 2015
 - First field test for internal Level 1 (L1) trigger

The L1 tests were successful

=> The L1 trigger is now implemented in the EUSO-SPB instrument

(Long-duration flight operated by NASA, scheduled on April 2017)

03 **Results of L1 trigger test | At APC (Paris, France)**

• Test Internal L1 trigger functionality using a dark box and a pulse signal using LED

Series of tests of the internal Level1 trigger at the level of 1 elementary cell (EC)

1st test: at Laboratoire Astroparticule & Cosmologie (APC) in Paris, France

- Internal Level 1 (L1) trigger functionality using dark box, with LED light
- 2nd test: at TurLab in Torino, Italy
 - July $19^{th} \sim 28^{th}$, 2015 and August $23^{rd} \sim 29^{th}$, 2015
 - Internal Level 1 (L1) trigger with different kinds of emulated light sources
- 3rd test: EUSO-TA site in Delta, Utah, USA
 - October $6^{th} \sim 19^{th}$, 2015
 - First field test for internal Level 1 (L1) trigger

The L1 tests were successful

=> The L1 trigger is now implemented in the EUSO-SPB instrument

(Long-duration flight operated by NASA, scheduled on April 2017)

03 **Results of L1 trigger test | At the Turlab facility (Torino, Italy)**

- The TurLab facility is used for oceanic and atmospheric physics experiments (in the Physics department of the University of Torino). It is equipped with a 5 m diameter rotating tank.
- Tank rotation \rightarrow light sources pass in the field of view of the detector (1 EC + lens)

Results of L1 trigger test | At the Turlab facility (Torino, Italy)

O3 Results of L1 trigger test | At the Turlab facility (Torino, Italy)

- Successful test: trigger on the cosmic-ray like events only
- Additional test: trigger on cosmic-ray-like event near to a city-like background

• Level 1 trigger on the cosmic ray track, even though the MAPMT next to it is contaminated by intense city-lights

 \rightarrow PMTs can work independently, even within the same elementary cell (EC)

NB: This is crucial to maximize the duty cycle and acceptance of the instrument: in the presence of a city, the rest of the field of view can still be used to detect cosmic rays! Series of tests of the internal Level1 trigger at the level of 1 elementary cell (EC)

1st test: at Laboratoire Astroparticule & Cosmologie (APC) in Paris, France

- Internal Level 1 (L1) trigger functionality using dark box, with LED light
- 2nd test: at TurLab in Torino, Italy
 - July 19th~28th, 2015 and August $23^{rd} \sim 29^{th}$, 2015
 - Internal Level 1 (L1) trigger with different kinds of emulated light sources
- 3rd test: EUSO-TA site in Delta, Utah, USA
 - October $6^{th} \sim 19^{th}$, 2015
 - First field test for internal Level 1 (L1) trigger

=> The L1 trigger is now implemented in the EUSO-SPB instrument

(Long-duration flight operated by NASA, scheduled on April 2017)

Results of L1 trigger test | At TA-EUSO site (Utah, USA)

03 **Results of L1 trigger test | At TA-EUSO site (Utah, USA)**

Trigger efficiency as a function of laser intensity (mimicking a cosmic-ray shower)

The trigger efficiency decreases as the laser energy is lowered.

04 Summary

- \rightarrow I was in charge of L1 level trigger and PDM board.
- → We have implemented the L1 trigger algorithm in the PDM board of the JEM-EUSO pathfinders for cosmic ray detection from space.
- → We successfully tested the L1 trigger functionality in Turlab Torino (triggering on air showers and not on other lights)
- → We are studying the behavior as a function of light intensity on EUSO-TA (in Utah, USA)
- → We have implemented the L1 trigger in the EUSO-SPB balloon instrument to be flown on an ultra long duration balloon flight in 2017 (NASA)
- → The SPB balloon should be able to detect, for the 1st time, a cosmic ray shower from above by UV light
- → Longer term: full JEM-EUSO mission for UHECR study from space, with an unprecedented effective acceptance (much larger than on the ground)