Context	Solar <i>ve</i> in Borexino	⁸ B measurement	Conclusion and perspectives

Study of solar ⁸B neutrino with Borexino and radiopurity of the ¹⁴⁴Ce source for the SOX experiment.

under the supervision of D.Franco and T.Lasserre

T. Houdy^{1,2}

¹Laboratoire APC, Université Paris-Diderot ²Service de Physique des Particules, Irfu-CEA Saclay

10 novembre 2016

Solar ν_e in Borexino 0000 ⁸B measurement

Conclusion and perspectives

In the ν oscillation field, many open questions. Two of them are :

Solar ⁸B ν_e rate in Borexino

Measuring the ${}^8B\nu_e$ rate as a test for MSW effect as well as metallicity models inside the Sun.

Solar u_{e} in Borexin

⁸B measurement

Conclusion and perspectives

In the ν oscillation field, many open questions. Two of them are :

Context	Solar <i>v</i> e in Borexino ●○○○	⁸ B measurement 0000000	Conclusion and perspectives
Borexino detector			
Borexino			

Located at the underground Gran Sasso laboratory (3800 m.w.e.) for shielding against cosmic ray and muons (reduced by a factor 10⁶). Running since 2007.

Borexino detector

Borexino - Detection method

u_{e}

Elastic scattering interaction on the e^- of the organic liquid scintillator is producing light \Rightarrow

- very low energy threshold,
- good position reconstruction
- good energy resolution.

But a very high radiopurity is mandatory because every β contamination can mimic a ν_{θ} signal.

Context	Solar <i>ν_e</i> in Borexino ○○●○	⁸ B measurement	Conclusion and perspectives
Production of ν_{e} in the Sun			

Production of ν_e in the Sun

Energy spectrum of the ν_{θ} produced in the Sun (pp chain +CNO).

Context	Solar <i>ve</i> in Borexino ○○○●	⁸ B measurement 0000000	Conclusion and perspectives
Goals and results of Borexino			
Goals and resu	Its of Borexino		

Borexino was designed for measuring the ⁷Be monoenergetic rate.

Context	Solar <i>ve</i> in Borexino	^o B measurement ●0000000	Conclusion and perspectives
Classical analysis			
⁸ B // ₂ · Cla	assical analysis		

Analysis first done in 2010 on 2 years of data taking, redone with improvments in 2016 with 8 years of data taking.

Primary selection Energy > 3 MeV (to avoid the 2.6 MeV γ from ²⁰⁸TI) Radius < 3 m \rightarrow 100 t of active target

We expect 0.25 cpd/100 t 8 B ν_e events above 3 MeV.

Background left

- nuons (1550 cpd/100 t) \rightarrow tagged by active veto,
- \blacksquare neutrons (25 cpd/100 t) \rightarrow tagged by active veto,
- cosmogenics (2.1 cpd/100 t),
- radioactive background inside the vessel (1cpd/100 t),
- external background (0.05 cpd/100 t).

Context	Solar ν_e in Bores	xino	8 C	B measure	ement			Conclusi	on and pers	spectives
Classical	analysis		-							
⁸ Β ν	_e : Cosmogenics									
	Cosmogenics : rac Cosmogenics above	dioactive eler 3 MeV and th	<mark>nents</mark> eir exp	produ ected	<mark>ced by</mark> rate in	muor the fid	n <mark>spall</mark> ucial v	ation. olume	:	
	Isotopes	¹² B ⁸ He	$^{9}\mathrm{C}$	⁹ Li	⁸ B	$^{6}\mathrm{He}$	⁸ Li	^{11}Be	$^{10}\mathrm{C}$	
	lifetime (s) (t_i)	0.0291 0.17	0.10	0.26	1.11	117	1.21	19.9	27.8	
	Expected rate $[cpd/100t]$ (r_i)	1.41 0.026	GI	0.071	0.273	G2	0.40	0.035	0.54	
	Fraction > 3 MeV (δ_i)	0.886 0.898	0.965	0.932	0.938	0.009	0.875	0.902	0.012	
10 ²	2 ² / ndf Prob G G G G G G G G G G G G G G G G G G G	196.9 / 146 0.003192 166.8 ± 3.2 161.2 ± 2.94 69.57 ± 3.80 12.73 ± 0.43		0	# C E .	- effect		-		

Cut 6.5 s after an internal μ :

 \Rightarrow 27.5 % dead-time

 \Rightarrow Residue of (27.7 \pm 1.5) \times 10 $^{-4}$ cpd/100t

Solar ν_{θ} in Borexino	⁸ B measurement	Conclusion and perspectives
alysis		
: Cosmogenics		
hat about long lifetime cosmoger C -> 10 C +2n then 10 C decaying as	hics like 10 C? β^+ (27.8s, 3.6 MeV).	
	Solar ν _θ in Borexino 0000 alysis : Cosmogenics hat about long lifetime cosmoger C -> ¹⁰ C +2n then ¹⁰ C decaying as	Solar $ν_{e}$ in Borexino 0000 alysis Cosmogenics hat about long lifetime cosmogenics like ¹⁰ C? C -> ¹⁰ C +2n then ¹⁰ C decaying as β ⁺ (27.8s, 3.6 MeV).

Looking for a triple coincidence :

- a muon crossing the detector
- a neutron detected on the same time
- around the neutron point looking for the decay of ¹⁰C

Cut 120 s after a (μ +n) coincidence in a 0.8 m sphere :

- \Rightarrow 0 % dead-time
- $\Rightarrow~$ Residue of (12.7 \pm 2) \times 10 $^{-4}$ cpd/100t

Context	Solar ν_{e} in Borexino	⁸ B measurement	Conclusion and perspectives
		0000000	
Classical analysis			

⁸B ν_e : Result of the classical analysis

Context	Solar ve in Borexino	⁸ B measurement ○○○○●○○	Conclusion and perspectives
New analysis			

⁸B ν_e : New analysis above 5 MeV

The idea is to take the whole inner vessel volume in order to gain in statistics.

Trying to fit the radial distribution event with an uniform radial distribution.

Problem : Contamination from outside, we have radially dependent background.

Context	Solar $ u_{e}$ in Borexino 0000	^o B measurement ○○○○○●○	Conclusion and perspectives
New analysis			
⁸ B ν_e : Nev	w analysis		

What are those events ? \Rightarrow Those events are most probably γ from neutron capture. How to take them into account ? \Rightarrow Why not analytical functions : a **radial** component, and an **external** one for events coming from outside the vessel (mainly γ from PMTs).

Here the radius fitted at two different threshold (respectively 4 and 6 MeV) is moving (from 4.11 to 3.88 m). Absurd.

Analytical functions are not working because the shape of the vessel is moving in time on long period analysis.

Context	Solar ve in Borexino	⁸ B measurement	Conclusion and perspectives
		000000	
New analysis			

⁸B ν_e : New analysis above 5 MeV

One needs to take into account the moving shape of the vessel.

Simulating events using on-time real shape

- Radial : e⁻ in the inner vessel,
- External : thermalized neutron inside the SSS,
- Averaging each of them for the shape measured every week.

Comparison MC/data above 5 MeV

Context	Solar <i>ve</i> in Borexino 0000	⁸ B measurement	Conclusion and perspectives

Conclusion

- The "classical" analysis is still pertinent and we handled the issue coming from a moving detector,
- A new perspective has been opened using the whole volume,
- Very promising results above 5 MeV but still to be confirmed below.

Comparison MC/data above 3 MeV

 χ^2 evolution depending on the energy threshold

