Journée des Doctorants

Félix-Louis Julié

Advisors : N.Deruelle, E.Porter

November 10th 2016

Research projects

Main topic : Modified gravities and how to test them with gravitational waves

Can we detect deviations to GR with compact binary systems?

Study the example of Scalar-Tensor theories

Scalar-Tensor theories

Eintein-Hilbert action modified with a scalar field

introduced by Brans-Dicke (60's)

Scalar-Tensor theories can be expressed in two frames

Jordan Frame

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-\tilde{g}} \left(\phi \tilde{R} - \frac{\omega(\phi)}{\phi} \tilde{g}^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right) + S_{m} [\Psi, \tilde{g}_{\mu\nu}]$$

A conformal transformation $\tilde{g}_{\mu\nu}=\frac{1}{\phi}g_{\mu\nu}$ and a scalar field redefinition $\phi(\varphi)$ leads to

Einstein Frame

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \right) + S_m [\Psi, A(\varphi)g_{\mu\nu}]$$

Matter is non-minimally coupled to the metric.

Binary systems in Scalar-Tensor theories

How to deal with compact stars?

 \rightarrow replace them by point particles

In GR, "effacement":

 $S_m = -\int m_A d au = -\int m_A d\lambda \sqrt{-g_{\mu\nu}} rac{dx^{\mu}}{d\lambda} rac{dx^{\nu}}{d\lambda}$ so that a test body follows a geodesic of the metric.

In Scalar-Tensor theories:

$$S_m = -\int m_A(\varphi) d\tau = -\int m_A(\varphi) d\lambda \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}$$

Trajectories depend on the internal structure of bodies through $m_A(\varphi)$: SEP violation.

But what are these masses?

Katz Superpotentials

there are many ways to define masses in GR

How to define a mass?

Noether charge associated to the gauge symmetry of GR (diffeomorphisms)

\rightarrow Katz action, in GR :

$$I = \int d^4x \, (\hat{R} - \overline{\hat{R}} + \partial_\mu \hat{k}^\mu_{
m K})$$

where we introduce the Katz vector and a background metric $ar{g}_{\mu
u}$

$$k_{\rm K}^{\mu} \equiv -(g^{
u
ho}\Delta^{\mu}_{
u
ho} - g^{\mu
u}\Delta^{
ho}_{
u
ho}) \quad {
m where} \quad \Delta^{\mu}_{
u
ho} \equiv \Gamma^{\mu}_{
u
ho} - \overline{\Gamma}^{\mu}_{
u
ho} \, ,$$

- Still GR (we only added a divergence)
- The boundary conditions are simply Dirichlet
- Invariant under diffeomorphisms

Katz Superpotentials

(bonus frame)

\rightarrow Katz action, in GR :

$$I = \int \! d^4x \, (\hat{R} - \overline{\hat{R}} + \partial_\mu \hat{k}^\mu_{
m K})$$

Remark 1

Katz' action is the covariant version of Einstein's action :

$$I = \int\! d^4x \, [\hat{g}^{\mu
ho}(\Delta^{\lambda}_{\mu\sigma}\Delta^{\sigma}_{
ho\lambda} - \Delta^{\sigma}_{\mu
ho}\Delta^{\lambda}_{\sigma\lambda}) + (\hat{g}^{\mu
u} - \overline{\hat{g}^{\mu
u}})ar{R}_{\mu
u}]$$

Remark 2

Link with Gibbons-Hawking-York term :

$$\int d\Sigma_{\mu}k^{\mu} = \int d^3x \sqrt{|h|} 2\epsilon \left(K - \frac{1}{2}\bar{K}_{ij}(\bar{h}^{ij} + h^{ij})\right)$$

Katz Superpotentials

\rightarrow Katz action, in GR :

$$I = \int \! d^4x \, (\hat{R} - \overline{\hat{R}} + \partial_\mu \hat{k}^\mu_{
m K})$$

This action is a Scalar (diffeomorphism invariant)

We perform a translation of the system : $x^{\mu}
ightarrow x^{\mu} + \xi^{\mu}$

$$\partial_{\mu}\partial_{\rho}\hat{J}^{[\mu\rho]}\equiv 0 \quad \text{where} \quad \hat{J}^{[\mu\rho]}=D^{[\mu}\hat{\xi}^{\rho]}-\overline{D^{[\mu}\hat{\xi}^{\rho]}}+\xi^{[\mu}\hat{k}^{\rho]}$$

So we have defined a conserved current $\nabla_{\mu}\hat{j}^{\mu}=0$ that derives from the "superpotential" $\hat{j}^{\mu}=\nabla_{\nu}\hat{J}^{[\mu\nu]}$

Mass is associated to stationnary metrics : $\xi^{\mu} = \delta^{\mu}_{t}$ (Killing)

$$\int_{S^2,r o\infty}dS_{\mu
u}J^{[\mu
u]}=\int_{r o\infty}d heta d\phi \hat{J}^{[0r]}\equiv M$$

Can we generalize this to Scalar-Tensor theories?

A specific example : asymptotically AdS Black Holes in Scalar-Tensor theories arXiv:1606.05849 (Anabalón, Deruelle, Julié)

$$2\kappa I = \int d^4x \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{U(\phi)}{\ell^2} \right) \ - \int d^4x \sqrt{-\bar{g}} \left(\bar{R} + \frac{6}{\ell^2} \right) + \int d^4x \, \partial_\mu (\hat{k}_{\mathrm{K}}^\mu + \hat{k}_{\mathrm{S}}^\mu) \, .$$

- Effective "negative Λ " from $U = -6 \phi^2 + \mathcal{O}(\phi^3)$
- ullet The background metric is AdS (I=0 when no BH)
- Proposal: add a Katz vector associated to the scalar field (it describes gravity too)

$$k_{\mathsf{S}}^{\mu} = f(\phi)\partial^{\mu}\phi$$

What vector should we choose?

Look for static, spherically symmetric case

$$ds^2 = -h(r) dt^2 + \frac{dr^2}{\tilde{h}(r)} + r^2 d\Omega^2,$$

 $\phi = \phi(r),$

• The extremalization gives field equations (for the bulk) and boundary terms

• Field equations from the bulk term

We only need the asymptotic behaviour to compute the mass $(M = \int_{r \to \infty} d\theta d\phi \hat{J}^{[0r]})$

$$\phi(r) = \frac{\phi_1}{r} + \frac{\phi_2}{r^2} + \mathcal{O}(1/r^3)$$

$$h(r) = \ell^{-2}r^2 + 1 - \frac{2m_g}{r} + \mathcal{O}(1/r^2), \quad \tilde{h}(r) = \ell^{-2}r^2 + 1 + \alpha^2 - \frac{2m_i}{r} + \mathcal{O}(1/r^2)$$

with

$$lpha=rac{\phi_1}{2\ell}$$
 and $m_i=m_g-rac{\phi_1\phi_2}{3\ell^2}$.

3 integration constants : ϕ_1 , ϕ_2 , m_g .

• Boundary terms : our prescription is to build k_S^{μ} so that I is extremal for the broadest possible family of on-shell solutions.

Specific boundary condition

On shell, this gives $k_{\rm S}^\mu = f(\phi) \partial^\mu \phi$ with

$$f(\phi) = \frac{1}{2}\phi(1 + C\phi)$$
 and $\phi_2 = -3C\phi_1^2 + D\ell\phi_1$

Results:

We have built a Katz vector associated to the Scalar field

$$k_{\mathsf{S}}^{\mu} = rac{1}{2}\phi(1+C\phi)\partial^{\mu}\phi$$

And found back results obtained by other techniques (GHY+Counterterms)

Mass:

$$M = \int_{r \to \infty} d\theta d\phi \hat{J}^{[0r]} = m_{\mathsf{g}} + D \frac{\phi_1^2}{24\ell}.$$

Indeed $f(\phi) = \frac{1}{2}\phi(1+C\phi)$ is the only way to get a finite mass!

Gibbs relation

Our black hole is compatible with thermodynamics if its onshell action verifies Gibbs' relation :

$$I_{\text{onshell}} = S - \beta M$$
,

Again, $f(\phi) = \frac{1}{2}\phi(1+C\phi)$ and $\phi_2 = -3C\phi_1^2 + D\ell\phi_1$ are necessary conditions (finite action + compatible with Gibbs).

The background AdS metric and the new Katz vector play a role similar to counterterms.

In Conclusion:

- We have managed to generalize Katz's definition of the mass of a spacetime to Scalar-Tensor theories in the example of BH-AdS.
- We also built an action that is compatible with Gibbs' relation.