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Introduction

¥ Conflict between GR and QFT!  Cosmological Constant
Problem

¥ Flat-self tuning!  Vacuum energy curves the bulk but leaves
4d-brane flat

¥ Study RG flow in cuved spacetime using holography
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Plan of the talk

¥ Holographic Renormalization Group Flows



&'()*+ !,-.+/0&*, 12345+(6+H

¥ Solution of Einstein’s equation with negative
cosmological constant

¥ Constant negative curvature

¥ (d+1)-dimensional AdS spacetime can be embedded 1n
SO(2,d) with

~(X1)* = (x)* + Aah(xq)" = £
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¥ Local rescaling of the metric
g () ! € Py (x)

¥ Conformal group consists of four types of generators
1 : Translation(P,,)

2 : Rotation(! 1)
3 : ScalingD)
4 : Special Conformal TransformationK )

¥ Theories invariant under the conformal transformations
are CFTs.



Holographic RG flow

¥ Gauge Theory !  Gravity Theory/ String Theory
¥ Large N and large coupling

String Theory = Classical supergravity

¥ Undeformed CFT (d-dim)! Gravity in AdS((d+1)-dim)

¥ Adding relevant deformation breaks conformal invariance!

SqrT = Sy + ! /ddXO! (X)

S,! UV CFT
! dt () _ .,
| din (W)

¥ How to describe 1t holographically?



Holographic RG flow

¥ Action 1s:

Slg, 6] = / duds T(R@ " %aaqsa%" V(qs)) + Scy

¥ Ansatz:

| = 1(u), ds?= du?+ AW, dx*dx’
A(u) ! Scale factor

" I Maximally symmetric metric: 3at, dS, AdS



Holographic RG flow (flat case)

Near maximum,! =0
did-1) m2I 5
ny o 2 '
Mass and slcaling dimension are related by

d 4m?2"2
1 —

V() =~ — , wherem? > 0

NI Q

+ —
2 d?

—HS"H! -
—HS"H# |-

~#$"$! |-




Plan of the talk

¥ Holographic Renormalization Group Flows in
Maximally Symmetric Spacetime



Equation of Motion

?ANotation: C = d—CL, ' = %

¥ Equations of motion

2(d! 1A+ P+ %e! AR =0

d(d! 1)AP! %gb'h V(g)! € AR =0
A dAbg! V'(¢) =0

Third one: Klein-Gordon equation
¥ In this project: R(') %0 |
|



Pure AdS
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First Order Formalism

Superpotentials

B 1
| e—2A(U) _ W-|-(q5)

¥ To make contact with RG flows

¥ Junction conditions are written in terms of superpotentials



First Order Formalism
EOMs
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UV boundary

¥ Scale factor and warp factor diverge
A(u) "
ghu) v

¥ Maximum of potential at | =0 corresponds to UV
I

¥ Inu coordinate UV happens at u = —oo



Positive curvature: IR endpoints

¥ Square root expansion 1s the solution

W
W)= L—2_ + 44:
N
!

S(1)=S5, !'" 1o+ aé

T
T(l)= —— + 444
I

¥ Flow stops here
¥ Geometry 1s asymptotically AdS near IR



Negative Curvature: AdS throat

"% $%&'($

AdS OIRO:Al= O,e"*I = constant £ 0

W:V\{z " 15+ 44a

S=5 !'" I+ aaa
T =constant+ aaa

¥ Flow stops here
¥ Geometry 1s asymptotically AdS



Bouncing Solution

¥ Warp factor neither diverges, nor takes the minimum value

| e EQ,AEQ,H=0,7E0

¥ Flow does not stop here, continues and reaches IRH!
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¥ All curvature invariants regular
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¥ Examples



Mexican Hat potential
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Flat case solution

¥ Flow starts from the maximum and ends in the minimum of the
potential

¥ Maximum! UV fixed point, minimum ! IR fixed point

| 1"#! "

%" H#!-




Curved case (W)

¥ Minimum cannot be reached for curved manifold
¥ W diverges at the IR

¥ The more we increase the curvature, the closer the IR point
comes to the UV

W!¢",B! ¢"

)

#H#



Bounce Solution
(Flat Case)

Near bounce: W (1)~ (1 —15)?2 |

Bounce happens on the critical curve B(! ) = —-3V(!)
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Bounce Solution

(Curved case)
Near bounce: W(!)! (I " 1g)¥? |

Bounce cannot happen on the critical curveB (! ) = o 3V (!)

I 1@"#! "

— | "#$% &'(#$H)* (+'&*
— 1 HS% - S (H&*

TR EEE

#%!



Skipping Solutions(Flat case)

¥ Potential 1s polynomial of order 12
¥ Several extrema: UV1, UV2, IR1, IR2

¥ Two solutions from UV 1(skipping and non-skipping), differ
by vev
()" #(9)
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Skip and non-skip flows
(Curved case)

¥ For small curvature 3 solutions: 2 skipping and 1 non-skipping

¥ Increasing curvature moves the flow end-points

¥ Above a certain curvature skipping flows vanish, only the non-

skipping flow remains
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¥ Action: S = Sbullk + Sghy y

' 1

Shulk = ddXdU\/?g R(g) — 552 - V(I )
!

SGHY =2 ddX\/ —"K

boundary

¥ lUsing equations of motion and definitions of superpotentials

_ _ w ,
Son-shell = dx —( —2(d-1) g4 Al U&
. 2R 4/2 | PIR 1

5 dngT(d! 2) /2
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On-shell action: skipping vs non-
skipping

B B T R Y Y Y TS

¥ For Euclidean QFT, free energy 1s negative of on-shell action
¥ At low curvature, skipping flows have lower free energy

¥ After a certain curvature, non-skipping flows have lower free
energy

¥ First order quantum phase transition!!



Conclusions and outlook

Conclusions

¥ QFT defined on a curved manifold with definite curvature, definite
source, there are finite number of flows.

Solutions differ by VEV.

Flow ends on a generic point which is not minimum of the potential.
Exotic solutions exist (Bouncing and Skipping Flows)

First order quantum phase transition been found between skipping

K K K K

and non-skipping flows!

loutlook
¥ Explore F-theorem in this holographic setting.

¥ Reinstate brane with curved world-volume and study self-tuning.



Thank You
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¥ Various terms are divergent. Need counter-termsH!!

s = di% TTWoe (")
! uv
st = di% TTR'Ug(")
UIV
2 . ! T 1 #3 "
s@ = | N dix 1 !(R!)248! | log" uv

¥ Functions satisfy

d
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Woet (P )Uct (M) =1



