

#### DYNAMICS SLOWDOWN DURING EARLY STAGES OF BACTERIAL COLONISATION

**Thomas Vourc'h**, Julien Léopoldès, Hassan Peerhossaini

Groupe Physique des Energies

Laboratoire APC

Université Paris Diderot



famille-schlegel.com

#### **CYANOBACTERIA: PRIMITIVE ORGANISMS**

• Primitive organisms, which enabled the transition to more evolved forms of life.



Evolution of the oxygene rate in atmosphere plotted against time

2011



G. Dismukes et al., 2008

Ο

Ο



Photosynthetic efficiency :

Cyanobacteria : 3 – 9 %

M. Brenner, 2006

Average terrestrial

organisms: 0.25 - 3%

20minutes.fr

#### Different products from cyanobacteria





#### M. Mazza, Journal of Physics D: Applied Physics, 2016

## **STUDYING DIFFUSION**

Definition of the Mean Squared Displacement (MSD):

$$MSD(\Delta) = \left\langle \left( X(\Delta) - X_0 \right)^2 \right\rangle$$

In the case of a 2-D Fickian behaviour:

$$MSD(\Delta) = 4D\Delta$$





VIDEO

![](_page_8_Picture_2.jpeg)

#### **DIFFUSIVE DYNAMICS SLOWDOWN**

![](_page_9_Figure_2.jpeg)

Bacterial transport towards the surface via a sedimentation process.

## DIFFUSIVE DYNAMICS SLOWDOWN40

Definition of the Mean Squared Displacement (MSD):

$$MSD(\Delta) = \left\langle \left( X(\Delta) - X_0 \right)^2 \right\rangle$$

In the case of a Fickian behaviour:

$$MSD(\Delta) = 4D\Delta$$

$$MSD(t,\Delta) = 4D(t)\Delta$$

![](_page_10_Figure_7.jpeg)

![](_page_11_Figure_1.jpeg)

![](_page_12_Figure_1.jpeg)

#### ANALYTIC FORMULA FOR THE DIFFUSION COEFFICIENT : CONTINUOUS-TIME RANDOM WALK (CTRW) MODEL

run

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

Bouchaud & Georges, 1990

II) Model

#### ANALYTIC FORMULA FOR THE DIFFUSION COEFFICIENT

$$D = \langle l^2 \rangle / 4 \langle \tau \rangle$$

**Ballistic hypothesis:** 

$$\left|l^{2}\right\rangle = \left\langle \tau_{run}^{2} V_{m}^{2} \right\rangle \approx V_{m}^{2} \left\langle \tau_{run}^{2} \right\rangle$$

![](_page_14_Figure_5.jpeg)

$$D \sim V_m^2 \frac{\langle \tau_{run}^2 \rangle}{\langle \tau \rangle}$$

![](_page_15_Figure_1.jpeg)

Experimental colonisation maps drawn at different experiment times

Bhaya, et al., 2015

III) Dynamics slowdown analysis

**COVERED SURFACE PROPORTION S(T)** 

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_1.jpeg)

#### **COMPARISON OF DIFFERENT SURFACES**

![](_page_18_Figure_2.jpeg)

# SURFACE COLONISATION AFTER ONE WEEK OF CULTURE

![](_page_19_Picture_2.jpeg)

Colonisation on a glass surface: diffusion enables an homogeneized colonisation.

![](_page_19_Picture_4.jpeg)

Colonisation on a PDMS surface: adhesion leads to the formation of numerous micro-colonies.

#### **COLONISATION AFTER ONE WEEK: MODEL**

#### Numerical computations model

![](_page_20_Figure_3.jpeg)

#### CONCLUSIONS

• Cyanobacterium Synechocystis sp. PCC 6803 diffusive dynamics decreases with time.

• Dynamics is well described with an intermittent model.

• This decrease can be linked to a progressive surface covering with the EPS dropped by the bacteria. EPS-depleted mutants do not exhibit such a decrease.

• Early dynamics can be linked to the shape of microcolonies growing on surface.

#### ACKNOWLEDGEMENTS

Many thanks to :

Annick Méjean

- Franck Chauvat & Corinne Cassier-Chauvat
- o Mojtaba Jarrahi
- Jean-Pierre Thermeau
- Guillaume Chau, Elnaz Pashmi & Chau Minh N'guyen

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

<u>duration</u>

Bhaya, et al., 2015

![](_page_24_Figure_2.jpeg)

## DIFFUSIVE DYNAMICS SLOWDOWN

Definition of the Mean Squared Displacement (MSD):

$$MSD(\tau) = \langle (X(\tau) - X_0)^2 \rangle$$

In the case of a Fickian behaviour:

$$MSD(\tau) = 4D\tau$$

![](_page_25_Figure_6.jpeg)

 $MSD(t,\Delta) = 4D(t)\Delta$