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First detection of gravitational waves

Figure: Gravitational wave signal from a binary black hole merger observed by the two LIGO
detectors during O1 (GW150914).
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Spectrum of gravitation waves: sources and detectors

Figure: Gravitational waves spectrum along with sources and detectors
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Compact galactic binaries

Stellar compact galactic binaries: white dwarfs, neutron stars,
stellar mass black holes.
Interesting astrophysical objects with a variety of scenarios :
Roche lobe overflow, stable/unstable mass transfer, nova,
X-ray burster, type Ia supernovae, common envelope phase,
coalescence
Resolvable sources for both detectors

During orbital phase for eLISA
During end-life coalescence for LIGO/VIRGO
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Wave Illustration - Signal Power spectrum
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Wave Illustration - Signal + noise power spectrum
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Wave Illustration - Signal + noise power spectrum
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Search algorithm

Particle swarm optimization: swarm-based algorithm whose
dynamic mimics movement of swarm observed in Nature

Differential evolution: population-based algorithm inspired
by evolution and genetic laws

Markov Chain Monte Carlo: stochastic Markovian sampler
used essentially to sample posteriors

Uphill climber: greedy criterion proposal Markov Chain
Monte Carlo-like algorithm used for local exploration
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Multi sources search
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Figure: A plot of the power spectra for two injected data sets, no
confusion (left) and mild confusion (right), along with the associated
instrumental noises and found residuals (Bouffanais and Porter, Phys.
Rev. D 93, 064020 (2016))
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Parameter estimation

Figure: Posterior probability density functions for the source-frame
component masses m1 and m2 for GW150914.
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Parameter estimation in LIGO/VIRGO

Bayesian techniques are used to estimate the probability
density functions for the parameters of the source. Two
algorithms currently integrated in LALInference:

Markov Chain Monte Carlo (MCMC)
Nested Sampling

Crucial to have efficient and fast techniques for parameter
estimation

More sources expected in O2 run
Electromagnetic follow-up
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HMC

Sampling method developed by Duane et al. in 1987
The inverse posterior density can be thought of as a
"gravitational potential"
We can then consider the parameter values as state space
variables qµ and introduce a set of associated canonical
momenta pµ

The Hamiltonian is then defined using a "mass matrix" Mµν as

H(qµ, pµ) = − lnL(qµ) +
1
2
M−1

µν p
µpν (1)

Use a leapfrog algorithm to solve Hamilton’s equations with
step size ε and length l
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Example posteriors
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DEMC: 102 points, acceptance : 11%
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DEMC: 103 points, acceptance : 28%
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DEMC: 104 points, acceptance : 65%
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DEMC: 105 points, acceptance : 62%
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DEMC: 106 points, acceptance : 18%
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HMC: 10 points, acceptance : 70%
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HMC: 102 points, acceptance : 55%
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HMC: 103 points, acceptance : 71%
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HMC: 5× 103 points, acceptance : 70%
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HMC challenges

Tuning of the algorithm parameters
Step size
Number of steps per trajectory
Scaling

Gradient of the log-likelihood computation is expensive
(requires adequate fitting)
Behavior with highly multi-modal posterior needs to be
assessed
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Effect of step size

27/39



Introduction Space based GW activity Ground-based GW activity Appendices

Effect of trajectory length
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Effect of scaling and mass matrix
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Fitting the gradient
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Thank you!
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Schemes

Thermostated annealing

γ =


1
2 0 ≤ ρ ≤ ρ0

1
2

(
ρ
ρ0

)−2
ρ > ρ0

, (2)

Simulated annealing

γ =


1
210

−ξ
(
1− i

tcool

)
0 ≤ i ≤ tcool

1
2 i > tcool

, (3)

Inertia annealing

w(i) =


wf 10

log10(
wi
wf

)(1− i
Tw

) if 0 ≤ i ≤ Tw

wf if i > Tw ,

(4)
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Likelihood and Bayesian data analysis test

Measured signal s that contains a gravitational wave h and
noise n:

s(t) = h(t) + n(t)

Use Bayesian statistics

P(h | s) = P(s | h)P(h)
P(s)

Definition of a noise weighted scalar product for the expression
of the likelihood

〈h1|h2〉 = 2
∫ ∞

0

h̃1(λ
µ
1 )h̃2

∗
(λµ

2 ) + h̃1
∗
(λµ

1 )h̃2(λ
µ
2 )

Sn(f )
df

Likelihood - SNR

lnLR = 〈s|h〉 − 1
2
〈h | h〉

SNR =
〈s|h〉√
〈h | h〉

Fisher matrix

Fµν =

〈
∂h

∂λµ
| ∂h
∂λν

〉
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Particle Swarm Optimization (PSO)

Idea: Define a swarm of particles evolving according to
movement equations in the parameter space
PSO equations:

X i (tj+1) = X i (tj) + V i (tj),

V i (tj+1) = wV i (tj) + c1ξ1(P i (tj)− X i (tj))

+ c2ξ2(G (tj)− X i (tj))

Parameters:
inertia w
personal c1
social c2
ξ1, ξ2 ∈ U(0, 1)
Number of particles Npart
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Differential Evolution (DE)

Idea: Construct a mutant solution using previous position and
a differential vector constructed with two other particles of the
swarm
DE proposed moves:

X i (tj+1) = X i (tj) + γ
[
X j(tj)− X k(tj)

]
(5)

i 6= j 6= k ∈ [1, ..,Np]

differential weight γ = 2.38/
√
2D with D being the dimension

of the search space parameter

Jumps accepted with probability α where α = min(1,H) and
HM is the Metropolis ratio

HM =
L(X i (g + 1))

L(X i (g))
, (6)
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MCMC based algorithms

Idea: Stochastic moves of particles using jump proposal
adopted to the problem. Jumps are accepted according to a
given criterion
Jumps proposal: normal distributed jumps in eigendirections of
Γµν with standard deviations σµ = 1/

√
DEµ

Acceptance criterion
Metropolis-Hastings ratio: moves are accepted with probability
α where α = min(1,H) and H is

H =
π(x ′)p(s|x ′)q(x |x ′)
π(x)p(s|x)q(x ′|x)

. (7)

Greedy criterion (Uphill Climber UC): L(λnew ) > L(λold)

MCMC algorithms applied to the P i (tj)
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First data set - Residuals
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Figure: A plot of the power spectra for the injected data set, the instrumental noise and the residual
for data set 1.
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Second data set - Residuals
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Figure: A plot of the power spectra for the injected data set, the instrumental noise and the residual
for data set 2.
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