ORIGIN OF THE VHE COSMIC RAYS EXCESS IN THE CENTRAL 100PC OF THE MILKY WAY

Lea Jouvin, Anne Lemière et Regis Terrier

Excess of VHE cosmic rays in the Galactic Center

H.E.S.S. (100 GeV -100 TeV)

After subtracting the brightest TeV sources:

-> diffuse hadronic emission

-> CRs energy density: 3-9 times higher than the local one and harder spectrum (Γ =2.3)

A unique accelerator in the central pc?

- H.E.S.S. collaboration (2016): **stationary source** at the center →Require power; **10**³⁸ erg s⁻¹
- SgrA*: Dissipated power: 10³⁹ erg s⁻¹ (Wang et al ,2013)
- ➔ Good candidate for CR acceleration

Or Multiple CR impulsive injections

- Galactic Center:
 - High supernova (SN) rate: 10⁻⁴-10⁻³ yrs⁻¹
 - Ė_{SN}=3.2×10³⁹ 3.2×10⁴⁰ erg s⁻¹

What is the impact of these SNRs on the CR density and VHE emission in the GC?

A simple time dependent 3D model CR injection and gamma-ray production

Contrains on the CR injection and propagation in the GC

γ-rays: spectral distribution

Credits: Jouvin et al 2016, submitted

Even with low acceleration efficiency: SNs alone can reproduce the total spectrum

CR density profile

3D spectral analysis

Is the ridge emission morphology energy dependent?

Key point:

- Is stationary source dominant at all energies? Are there other contributions?
- Are there variations of the spectrum with position in the region?

<u>Approach:</u>

- Open source tool (GAMMAPY)
- Develop background model whatever the energy band based on AGN runs:

Crab images (≈18 h)

Excess

Crab: 0.5-40 TeV, 20 images

Galactic Center (≈240 h)

GC ridge emission: Residual Map Subtraction of the GC source + G0.9

